Sunday, August 27, 2017

Quick chat with Ravi Subramanian : Keynote speaker DVCon India 2017

Dr. Ravi Subramanian
For many decades, the semiconductor industry followed Moore’s law, transforming what we called as a discrete chip carrying a function on silicon into a small IP inside the SoC on silicon today. As we continue to debate beyond Moore, more than Moore or stagnation of this law and step in the world of IoT, we realize that the system is no more only a single SoC, but instead, it is a conglomeration of multiple tiny & large systems working in tandem producing interesting use cases & enhancing user experience. But are we as the verification engineering workforce ready with the required skills along with the right arsenal of tools and efficient workhorses to ride through this new challenge?

Dr. Ravi Subramanian, Vice president and General manager of Mentor’s IC Verification Solutions Division shares a holistic view on this subject in his opening keynote on Day 2 at DVCon India 2017. The talk titled Innovations in Computing, Networking, and Communications: Driving the Next Big Wave in Verification, dives into convergence of different technologies and its impact on verification. A quick chat with Ravi, revealed the excitement that we all can look forward to in his talk as well as the future that lies ahead for all of us. Read on!!!

Ravi your keynote focusses on drivers to the next big wave in verification. Tell us more about it?

Yes, my talk will focus on the amazing innovations our industry is developing with respect to computing, networking, and communications. These include the changing nature of computing, the dramatic changes in networking and storage, and the disruptive effect of new broadband communications. Yet, the next big wave in design is actually the convergence of these technologies, which is driving today’s internet-of-things and autonomous systems revolution. A common theme across these emerging systems is the need for low power, security, and safety—whether you are talking about devices on the edge or high-availability systems in the cloud. These new challenges have opened innovation opportunities for us to rethink the way we approach verification

IoT is driving the convergence of different technologies. How would it affect the way we verify the systems today?

To answer your question, I first want to step back in time to provide a framework for today’s challenges. In the 1990’s the concept of separation of concerns was introduced into engineering. Essentially, the idea is that verification would become more productive if we focused on verifying orthogonal concerns or requirements of the design separately versus trying to verify multiple concerns combined. For example, during this period of time, we learned that it is more efficient to verify functional concerns and physical concerns in separate simulation runs. This approach to verification worked well up to about 10 years ago. The emergence of mobile devices introduced new low-power requirements that made it difficult to separate concerns. For example, today we see that physical concerns (such as low power management) now can directly affect functional behavior of a device. Hence, these concerns need to be verified together. Bringing together physical, electrical, and functional has become mandatory.

The key point is that convergence of computing, networking, and communication, which is driving IoT, has introduced new layers of verification requirements that did not exist years ago, and the interaction of these requirements has had a profound effect on the way we must verify systems today.

What are the solutions that the EDA industry is driving to enable this next big wave in verification?

One contributing factor to growing verification complexity is the emergence of new layers of verification requirements, as I previously mentioned. For example, beyond the traditional functional domain, we have added clock domains, power domains, mixed-signal domains, security domains, safety requirements, software, and then obviously, overall performance requirements. Hence, we see the next big wave in verification on multiple fronts:

Continuing introductions of focused solutions optimized for specific verification concerns. Examples of these focused solutions include: formal apps focused on  verifying security features within a design or power apps used to provide complete RTL power exploration and accurate gate-level power analysis within emulation.
Emerging system-level analysis solutions, which provide new metrics and insight into the fully integrated SoC. This becomes essential for system-level performance analysis. The IoT SoC, for example, is a different beast than today’s state-of-the art networking SoC.
Greater convergence across multiple verification engines (e.g., simulation, emulation, and FPGA prototyping), which will improve productivity. The new Accellera Portable Stimulus standard will help facilitate this convergence and foster the introduction of new verification solutions.
Q4: Do you see domain specific solutions like automotive or machine learning etc. getting enabled for verification?

Yes, in fact there are multiple opportunities to leverage big data analytics to solve many system-level analysis problems. Machine learning is only one approach used today for big data analytics; however, there are others. Now, concerning domain-specific solutions in the automotive space, formal technology is being leveraged to improve productivity related to safety fault analysis.

Do you expect all workhorses (Simulation, Emulation & Formal) playing a critical role in verifying these new converged system level designs?

Obviously, this depends on the design. A project developing sensors for an IoT edge solution has different verification requirements than a project developing an automotive SoC containing multiple CPU and GPU cores, a coherent fabric, and multiple complex interfaces. Nonetheless, with increased design integration, multiple verification engines are required today that address the growing volume of verification requirements.

This is the 4th edition of DVCon in India. What are your expectations from the conference?

DVCon, in general, is recognized as the premier conference on the application of languages, tools, methodologies and standards for the design and verification of electronic systems and integrated circuits. And DVCon India is no exception, which has continued to grow in both attendance and exhibitor participation. I expect DVCon 2017 will continue to deliver high-quality technical content and provide valuable networking opportunities for its attendees. It is the premier venue to share state-of-the-art developments and connect the creative minds working on these developments.

Thank you Ravi!

Join us on Day 2 (Sep 15) of DVCon India 2017 at Leela Palace, Bangalore to attend this keynote and other exciting topics.


Disclaimer: “The postings on this blog are my own and not necessarily reflect the views of Aricent”

Sunday, August 20, 2017

Quick chat with Apurva Kalia : Keynote speaker DVCon India 2017

Apurva Kalia
The advancements in semiconductor industry starting picking up with the rise in performance of processors driving the computer industry. Next, the mobile segment opened floodgates when the PC market stagnated & then low power with smaller dimensions on top of performance drove the innovation in silicon implementation. The industry today is at cross roads once again awaiting the next big thing. Automotive is one of the key areas to get the ball rolling yet again. But then, each domain has its characteristics that needs to be aligned to!

Apurva Kalia, Vice President of R&D focusing on Automotive solutions at Cadence picks on an interesting topic for his DV track keynote on Day 1 at DVCon India 2017. With the auto industry shifting gears into autonomous cars, the question worth asking is – Would you send your child to school in an autonomous car? Yes, that’s the theme of Apurva’s keynote and here’s a sneak peek on this topic.

Apurva your keynote focusses on ‘autonomous cars’ – the talk of the town these days. Tell us more about it?

Well, there is major inflection point coming up in automotive electronics. We all know that Moore’s Law driven advances in cost per transistor and capacity have been holding up for many years. Complex chips are now possible within a cost factor that was not possible earlier. Moreover advances in algorithms, especially Machine Learning, now enables much more complex processing, especially vision based processing, to be done in real time. Both these trends coming together with advances in sensor technology has enabled systems to be created which can detect their environment quite accurately and in real time. This is the basis of autonomous driving. Also, as we know, every few years the semiconductor industry is looking for the next big trend which will drive the fab capacity. The above factors are pushing autonomous driving to be the talk of the town.

Security & Safety are emerging areas resulting from this topic. How does this change the way we verify our designs?

As I described above, with autonomous driving really taking off, these systems are becoming mission critical for the automobile. This means that the system needs to be safe and secure. It is inconceivable for a car to stop working at 80 kmph on a highway! Also, with the car needed to be connected to other cars and even to infrastructure and internet, this opens the system to attacks and makes it vulnerable. Therefore, these systems needs to make safe and secure to ensure safety and security of the automobile.

What are the solutions that the EDA industry is driving to enable ISO 26262 requirements from process & product perspective?

ISO26262 is the main standard that defines the safety requirements for automobiles. It is a very comprehensive standard which places requirements on all automotive systems. In fact edition 2 of the standard – coming out in Jan 2018 – will focus specially on semiconductors. Given the excitement around automotive electronics and autonomous systems, EDA industry needs to retool rapidly to address this need. Ensuring safety in these designs requires additional design and verification flows, methodologies and tool changes. The EDA industry needs to step up to define and create these flows, methodologies and tools required.

What are your views on the couple of accidents that happened in the US with autonomous cars? What could have been done better?

We are at early stages of this technology. Unfortunately as with any new technology, technology will take time to stabilize. In the meantime, during this stabilization time, unfortunate things like these accidents could happen. Organizations and individuals who are early adopters of these technologies take these risks, but they also contribute in a big way for advancement of these technologies. However, with the proper use of tools, implementation of standards, and focus on new solutions, we can avoid these kind of accidents.

How do you observe the adoption of autonomous cars across the globe & in India?

Autonomous cars are here to stay. They are solving real problems in real environments. We already have examples of autonomous cars on real roads – driving very safely. In fact, there are statistics which show that autonomous cars will actually cut down on accidents and fatalities – the most of which are caused by human error. Last year, I saw an engineering college in Delhi demonstrate an autonomous vehicle in Govindpuri – one of the most congested areas of Delhi. So this technology is real and works. I think it is just a matter of a few years when we will see this mainstream.

Do you see all workhorses (Simulation, Emulation & Formal) playing a critical role in realizing Auto grade designs?

Yes – all current EDA technologies – not just verification technologies, but even implementation technologies – need to be upgraded to support safety and security design and verification. All engines will need enhancements and special features to support these new requirements and flows.

This is the 4th edition of DVCon in India. What are your expectations from the conference?

I have seen DVCon India grow from humble beginnings to an excellent conference today. I think this conference provides a very good platform to share and discuss new trends in design and verification. I look forward to stimulating conversations on new flows and technologies. This conference attracts many design companies and all EDA vendors in India – what better assemblage of the right people for these discussions.

Thank you Apurva!

Join us on Day 1 (Sep 14) of DVCon India 2017 at Leela Palace, Bangalore to attend this keynote and other exciting topics.


Disclaimer: “The postings on this blog are my own and not necessarily reflect the views of Aricent”